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Abstract. The eigenstates of a six-site cluster with spins of S = coupled by Heisenberg 
interactions are studied exactly. We have investigated various criteria (variational, perturba- 
tional and related to a stability of 'spin waves') to distinguish a local energy minimum, if 
any, from ordinary quantum states. We have found that a sensible definition of a local 
energy minimum is similar to the classical one. It involves investigating the stability of 
the system against infinitesimal spin rotations. We give an example of a six-spin system 
with three minima which are stable against single-spin rotations of which two seem to be 
stable against simultaneous many-spin rotations. 

1. Introduction 

The central idea in spin-glass physics (Binder and Young 1986) is that of multiple 
local energy minima. A spin glass placed in any such minimum would stay there 
indefinitely if there was no heat bath surrounding it. At any finite T, however, the 
system is characterised by peculiar dynamical effects which may last on timescales of 
hours or even days. 

A model which embodies the essentials of this physics has been proposed by 
Edwards and Anderson (1975). In this model, the Hamiltonian is given by 

%'= - C J,,cT, U, (1) 
( e )  

where JtJ are Gaussian random numbers. The spin-spin interactions in equation (1) 
are written in the Heisenberg form but a related model, in which the interactions are 
of the Ising type, has been studied even more extensively. 

In the case of Heisenberg spins research has mainly concentrated on the classical 
limit of the model. In this limit, one considers the spins to be vectors which can take 
any direction on a sphere. The concept of an energy minimum is well defined here 
(see, e.g., Walker and Walstedt 1980). A minimum corresponds to such a spin configur- 
ation that any infinitesimal departure away from it induces an increase in energy. In 
order to find the minima one usually starts from some random spin configuration and 
aligns spins sequentially towards their local exchange fields until spins cease adjusting. 
A state uniformly rotated in space is considered to be equivalent to an unrotated one. 
Note that the alignment is a spin by spin process, so that a stability against multiple-spin 
deviations is not necessarily guaranteed. 

In the case of Ising spins a local energy minimum is defined in a similar fashion. 
The only difference is that instead of infinitesimal rotations one studies spin reversals. 
Again, one usually investigates only single-spin stability which relates to a particular 
choice of the spin dynamics-that proposed by Glauber (1963, see also Banavar et a1 
1985, Cieplak and tusakowski 1986). 
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The Ising and classical Heisenberg spin glasses seem to be well investigated by 
now. Very little is known, however, about quantum effects in frustrated systems. Some 
pioneering studies have been undertaken (Fisher 1975, Bray and Moore 1980, 
Theumann 1986). However, they have not yet elucidated the meaning of the concept 
of a local energy minimum-other than the ground state-in quantum systems. 

In this paper we attempt to clarify this notion by studying the six-spin cluster of 
figure 1 where the spins are the S = t quantum objects and the exchange couplings are 
as indicated. Each site has a coordination number of four. An equivalent geometry 
is that of a ring of six spins with first- and second-neighbour couplings. The interactions 
are described by equation (1) where ui now consists of the three Pauli matrices. The 
merit of studying this system is that it allows for an exact analysis of its eigenfunctions. 
There are altogether only 64 states in this small cluster but in a certain sense, as we 
shall see, some of them can be considered as corresponding to two different local 
energy minima. Another interest in studying this system is that its classical counter- 
part-exchangewise-has only one minimum. Note, however, that even the ground 
states of the two systems cannot be compared to each other meaningfully due to the 
fact that a continuum of classical states has no correspondence to the 64 states of the 
spin-; system. Recall that the classical limit corresponds to taking S + CO, h + 0 with 
their product staying constant. 

The properties of quantum antiferromagnetic rings of several spins with nearest- 
neighbour couplings have been discussed by Orbach (1959). The studies reported here 
can be thought of as an extension of the Orbach work to spin glasses. Our main 

-1. 4 6 4  / ‘ , - 0 . 9 2 8  - 0 . 9 2 8  // ‘1. - 0 . C 8 6  

3 5 1 3 

Figure 1. The six-spin cluster considered in this paper. The numbers indicate values of 
the exchange couplings for the spin-glass case. 
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concern here is how to  distinguish local energy minima, if any, from ordinary quantum 
states. 

2. Eigenfunctions 

Consider the cluster of figure 1. Its corresponding Hamiltonian (1) is a 64 x 64 matrix. 
We choose the basis to consist of states of definite z spin components at individual 
sites. It is convenient to introduce 

S = $ h  u k .  (2) 
k 

Thus all of the eigenstates IE, S, m )  of 2f can be enumerated by the energy and the 
quantum numbers of S2 and S' respectively. For the six-spin cluster the following 
multiplets are allowed: (i) a single multiplet corresponding to S = 3, (ii) five multiplets 
with S = 2, (iii) nine with S = 1, and (iv) five with S = 0. It follows that there are 20 
possible energy eigenvalues here (in the case of Ising spins there would be 32). 

In the ferromagnetic case J,, = 1 there is a significant degeneracy since we have six 
different energy eigenvalues. The energies of the multiplets are then as follows: 

S=3:  -12 
s = 2 :  -4, -4, -4, 0, 0 
S = l :  0, 0,0,4,4,4, 8, 8, 8 
S = 0: 0, 8, 8, 8, 12. 

In the spin-glass case, with Jy as in figure 1, the degeneracy is removed and the 

S=3:  0.862 

The ground state 18) is a septuplet corresponding to E = -12. 

energies are as follows: 

S=2:  -12.691, -4.006, 0.836, 6.356, 10.366 
S =  1: -15.492, -8.685, -5.476, -4.636, -2.708, 3.729, 5.218, 9.098 
S=O: -14.280, -5.360, -1.825, 5.776, 13.104, 16.366. 

The ground state / E o ,  1) is a triplet corresponding to Eo= -15.492. Its highest m 
component is 

IEo, 1, 1) = -0.0886lJJ.T.T.Tt) + 0 . 2 0 4 3 I & w t )  + 0 . 6 2 0 0 I m J t ~ )  -0.4894ILtttJT) 

-o.2463llttftl)-o.lo83It.llttt)-0.2209ltJtJ.tt) 
+ 0.2647ItJttJt) + 0.1531 I t l t t t l ) - o . 2 1 2 4 l t t l l t t )  

+o.loo6ltl.lt.lt)+o.lol llttltlt)+o.ol58lttlttl) 
-o.o7001tttJJt)-o.1167ltttltl)+o.l94llttttll). 

Its m = 0 component is 

IEo, 1.0) = Ql( i l J l t t t )  + I t t tJJ l ) )  + az(l. l l tJtt)+ Ittltll)) 
+ %(1.1L??J.t) + 1 ttJ.lt 5. + a d (  l i l t  t7.l) + J i l t ) )  
+ as( lJ t l l t t )  + ItJttll)) + ab(I.ltJt.lt)+ ltltlt.1)) 
+a7(llt.ltt.l)+ ltl?Jlt)l+ as( l l t tJJ t ) )+ 1tJJtt.l)) 
+as(Iltt.ltl)+ lt.lS?lt)) + %(l.lttT.l.l)+ 1T.ll.lt.T)) 

where a ,  = 0.0052, a2 = 0.2196, a3  = -0.2215, a4 = -0.1286, a5 = 0.4327, a6 = -0.1304, 
a7 = -0.0185, as = 0.0428, a, = 0.1817 and a,, = -0.3831. 
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The first excited state I E l ,  0) is a singlet of energy E ,  = -14.280. The corresponding 
wavefunction is similar to JE,, 1,O) with symmetric combinations (I ) + I  )) replaced 
by antisymmetric ones (I ) - I  )) and with a,  = 0.1066, a, = -0.0636, a3 = -0.0435, 
a4 = 0.0004, a, = -0.4190, a6 = 0.1642, a, = 0.1482, a8 = 0.2553, a, = 0.2273 and a,,  = 

At this point it is convenient to describe the properties of some related models in 
which the exchange couplings are as in figure 1. The classical Heisenberg system has 
one minimum only (43 systems or so start yielding more than one minimum). We 
started from more than 300 initial configurations of unit vectors and kept minimising 
the energy. Each time we got an energy of -10.8198 and a magnetisation IMI = 2.49. 
The ground state is certainly stable against multiple-spin deviations. The Ising system 
(ai = k l ) ,  on the other hand, is characterised by two energy minima which are stable 
against single-spin reversals. Each of these minima is a doublet. The ground state 
corresponds to IJttttt) and to its inverted image, both yielding an energy of -9.80. 
The higher minimum is at E = -7.42 and it corresponds to 1JtttJ.J) or ItJJJTt). This 
minimum is not stable against a simultaneous reversal of two spins. 

Finally, it is proper to make a comment about the choice of the exchange couplings 
defining the model of figure 1. The 12 couplings shown come from a Gaussian random 
number generator. The only relevance of this particular choice is that it offers a 
possibility to study a system with more than one local energy minimum. At the same 
time it is small enough to allow for an exact study. Other choices of Jo will surely 
yield different numbers of the minima. For instance, the couplings which differ in sign 
to those shown in figure 1 yield only one minimum: the ground state. This is in contrast 
to the fact that the Ising counterpart of the system considered in Banavar er a1 (1985) 
and Cieplak and tusakowski (1986) has three such minima. It seems worthwhile to 
investigate the statistics of local energy minima in ensembles of quantum systems with 
Gaussian couplings as a function of the number of spins and the dimensionality. 

-0.3760. 

3. Energy minimalisation by variational methods 

We now return to the cluster of quantum spins and ask which of the 20 multiplets 
behave like minima. One way to define a minimum could be as follows. Suppose we 
choose some set of states and construct a wavefunction I$) as a linear combination of 
the states within the set. For simplicity, let the states be some selected energy eigenfunc- 
tions leA). Thus 

I$)=C (xA +iyA)leA) 

c cx: + Y : )  = 1 

with 

to ensure the proper normalisation. This condition means that 
x:=1- x:-cy: 

A f l  A 

(3) 

(4) 

(5) 

where le,) is an arbitrarily chosen state. We now envisage some sort of T=O Monte 
Carlo process in which one starts from a set of X, and y ,  and keeps modifying the 
coefficients so that the average energy 
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diminishes, subject to condition ( 5 ) .  Combining ( 5 )  and ( 6 )  we obtain 

E = e , +  x?(e,  - e , )  +c y : (e ,  - e , ) .  
A # I  A 

It follows that 

A # l  
aE - = 2( eh - e l ) x ,  
ax, 

(7)  

A necessary condition for an extremum is xA = y ,  = 0 for A # 1 (or more generally, for 
A outside the degeneracy subspace corresponding to e , ) ,  If e ,  < eh for each A # 1 then 
l e l )  is a (global) minimum. This means that in the Monte Carlo process the lowest 
energy state available is approached. If the ground state was within the set, the system 
would land in it whatever the properties of the other states. 

We conclude that the concept of a local minimum is more subtle and must involve 
variations within such sets of states which are restricted by something else than energy. 
One example of such restrictions will be discussed in the next section. 

4. Stability against infinitesimal rotations 

We now investigate directional variations of the energy eigenstates and envisage spins 
rotating infinitesimally around random axes. A state of locally minimal energy should 
gain energy in the process. 

The six-spin rotation can be characterised by six local axes, as determined by six 
versors n,, n 2 , .  . . ,ne,  and by six angles of rotation, b,, . . . , 46. Let 

R = exp( -:inl ~ ~ 4 ~ )  exp( -+in, * ~ ~ 4 , )  . . . exp(-+in6 * U646). (10) 

The wavefunction 

$ = (11) 

corresponds to a state rotated away from a given energy eigenstate leA).  The rotated 
state admixes other energy eigenstates resulting in a modified expectation value, E R ,  
of the energy. E R  is given by 

ER ( A  ) = ( e ,  1 R' %RI e,,). (12) 

It is straightforward to show that 

The first derivative at {&  = 0) vanishes for any leA). An infinitesimal rotation would 
be considered stable if the 6 x 6  matrix Ak, (A)  of the second derivatives was positive 
definite. The corresponding state would be a local minimum. 
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The matrix of the second derivatives is a function of twelve angular parameters 
which specify the directions n, , . . . , n6. The matrix can be rewritten in the following 
form: 

& ( A ) =  - 6 k 1  J~p(e, I (nl .  U I ) ( ~ I .  u p ) - u p .  ~ I I ~ A )  
Pfl 

- ( l - s k , ) J k f ( e A I ( n l ’ n k ) ( a k ’  u l ) - ( n l *  uk)(nk’ VI)le,4). (15) 

The diagonal part of (15) describes the energy change when the rotation is applied to 
single spins. The off-diagonal part corresponds to a simultaneous rotation of up to 
six spins. 

It is convenient to express le,) in terms of the basis states in the following way: 

le,)= C ~ . , . . . . , I ~ l , v 2 , . . . ,  v6) 
Y I , , , Y 6  

where vi = 5 1  (or t, J). We insert (16) into (15) and obtain 

Notice that the sign of the diagonal part depends mainly on the exchange couplings 
and on the coefficients 8. The sign of the off-diagonal part, on the other hand, depends 
on the directions of rotations in a more complicated way. The stability against 
single-spin rotations is thus very easy to assess. Our results are as follows. In  the 
ferromagnetic case the only local minimum is the ground state. However, in the 
spin-glass case, we have three local minima: the ground-state triplet ] E o ,  l ) ,  the singlet 
lE, ,  0) and a quintuplet [ E , ,  2 )  with E,  = -12.691. (When Jij = -1 the ground state is 
a singlet of energy -12 and three multiplets of energy -8 are excited local minima.) 

It is interesting to ask whether the excited energy minima I E , ,  0) and / E 2 ,  2 )  are 
stable against multiple-spin rotations. As far as we know, a corresponding study for 
classical spin glasses has never been done. In order to answer the question, we have 
picked sets of random directions n,, . . . , n6 and calculated the matrix elements of 
Akl(A) .  The matrix was subsequently diagonalised in order to check for its positive 
definiteness. The quintuplet minimum / E 2 ,  2 )  was immediately found not to be stable 
with respect to this broader class of deviations. On the other hand, the singlet minimum 
[ E , ,  0) is most likely to be a true local minimum even if six-spin deviations are taken 
into account. None of 100 000 sets of random directions considered gave rise to any 
instability. The system of figure 1 has thus two non-trivial local energy minima. 

5. Other criteria 

It is now interesting to ask if the local minima IEo, 1) and IE, , 0) are distinguished by 
anything else than a stability against spin rotations. We have thought of two such 
criteria. 
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The first one involves applying a random perturbation 

6% = /I c Bi af 
to the Hamiltonian (1). In equation (19) /I denotes a magnetic moment and Bi are 
spatially random magnetic fields. We pick a state le,) and calculate 

TA is related to the probability of transitions out of le,). It turns out that none of the 
states is distinguished by TA. If we restrict A ‘  in equation (20) to states of energies 
lower than eh then only the ground state is distinguished. With bigger systems, the 
densities of states come into play and it is possible to imagine that local energy minima 
could yield appreciably different transition rates than states away from a minimum. 

Another idea involves studies of small oscillations, or spin waves, around the 
particular states le,). The simplest approach is to take 

a, = (a,) + aa,  (21) 

eliminate the quadratic terms and derive an equation of motion in the form 

a,s~,t = -i B:,”’su; 
k 

where 

B : , ” ’ = - ( U ; : ) A k + 6 , k  C (U7)A/ 
I 

We have used the fact that (U;)  = (a:) = d,Saf = 0 and a: = a; +ia:,.. The average is 
in the eigenstate leA).  

The eigenvalues of B,k(A) are the frequencies of spin waves excited around le,). 
In the ferromagnetic ground-state multiplet the S‘ = 0 state yielded all zero eigenvalues, 
whereas the S’ = 1 state gave rise to one zero and five negative eigenvalues. None of 
the eigenvalues was complex. The ground state, however, was in no way distinguished 
from most of the other states and the reality of the eigenvalues supplied no effective 
criterion to find a minimum. 

For large systems, the classical ground state should work as a good ‘medium’ for 
exciting spin waves and then perhaps stable small oscillations would signify a true 
energy minimum. In the spin-glass case introducing local quantisation axes will be 
necessary to describe spin waves. 

6. Conclusions 

In this paper we have discussed various criteria for describing a local energy minimum 
in quantum spin systems. A proper criterion turned out to be investigating stability 
against small-spin deviations. This criterion coincides with the classical one even 
though states in the quantum and classical systems are defined differently. The system 
shown in figure 1 has three multiplets which are stable against single-spin rotations. 
The lower two of these persist to be local energy minima if multispin rotations are 
allowed. The role of such minima in the relaxation processes of quantum spin glasses 
remains to be elucidated. 
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